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Abstract This article identifies singular interfaces

according to singularity in terms of structural defects,

including dislocations and ledges. Defect singularities are

defined by the elimination of one or more classes of defects,

which must be present in the vicinal interfaces. In addition

to the three commonly classified structural interfaces, a new

type of interface—the CS-coherent interface—is intro-

duced. Singularities in dislocation and ledge structures have

been integrated in the study of orientation relationships

(OR). The dislocation structures are determined through the

O-lattice theory, originally proposed by Bollmann. The

basic concepts of the O-lattice and related formulas from

the original theory and extended studies are briefly

reviewed. According to the theory, singular interfaces

exhibiting singularity in the dislocation structures have

been identified. An interface that is singular with respect to

the interface orientation must be normal to at least one Dg, a

vector connecting two reciprocal points from different lat-

tices. An interface that is singular also with respect to the

OR must obey one or more Dg parallelism rules. The

selection of proper Dgs for different preferred states of

interfaces are explained. Identification of singular interfaces

with measurable Dgs provides a convenient and effective

approach to the interpretation of the observed facets and

ORs. The ambiguity about the selection of the deformation

matrix (A) for the O-lattice calculation and the advantage of

the O-lattice approach over the approach using the Frank–

Bilby equation for the calculation of the interfacial dislo-

cations are clarified. Limitations of the present approach

and further study are discussed.

Introduction

Morphologies of secondary phases are important features

of microstructures of many materials. The embedded

crystalline phases generated within a solid crystal via a

solid state phase transformation often display fascinating

morphologies. Like regular morphologies of various free

crystals grown from vapor or liquid, embedded crystals are

also often confined by facets of unique crystallographic

orientations. These faceted interfaces are the key charac-

teristics for understanding the morphologies.

In principle, the facets either in a free surface of a

crystal or in an interface enclosing an embedded crystal in

an equilibrium shape can be explained according to their

associations with local minima of the surface or interfacial

energy, as can be determined by the Wulff construction [1,

2]. The kinetic effect may alter the relative sizes of the

facet areas, but it does not change the association between

a facet and an energy minimum. Therefore, it is reasonable

to explain the observed facets according to local energy

minimum. Advanced models and computers have facili-

tated calculations of surface energy and interfacial energy.

However, it demands large computing work to determine

the energy variations with surface orientations, which has

two degrees (2D) of freedom. The calculation is much

more demanding for interfacial energy, since the interfacial
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geometry varies in the five-dimensional boundary geo-

metrical phase (5D BGP) space [2]. An effective approach

to determine equilibrium shapes of a crystal is to calculate

the values of surface energy of a set of facet candidates.

These candidates are usually from low index planes of the

crystal, such as low index planes of {100}, {110}, {111},

or {112} for a cubic crystal [3–5]. The investigation of

morphologies of an embedded crystal will be greatly

enhanced if a set of candidates for interface facets are

obtainable from a simple way. However, though some

interface facets may be parallel to the low index planes of

either crystal, other facets are not [6].

Various models have been proposed to interpret the

observed interface facets and the corresponding orienta-

tion relationship (OR) between the crystals, as summa-

rized in recent reviews [6, 7]. The majority of them are

geometric models. The essence of any geometric model

is to evaluate the degree of fit in an interface, but dif-

ferent aspects have been emphasized in various geo-

metric criteria, especially those proposed to rationalize

the irrational habit planes of precipitates [6, 7]. There is

no universal agreement on the energy representation with

a specific geometrical parameter. A systematic study of

optimal phase boundaries in exsolved alkali feldspars

published in 1968 by Bollmann and Nissen [8] represents

a pioneering geometric approach. Instead of calculating

the interfacial energy, they proposed to use a p param-

eter (p = R|bi|
2/d2

i , where bi and di are the Burgers

vector and spacing of the dislocations, with di being

determined according to a simplified O-lattice. The def-

inition of the O-lattice will be given later). A correlation

between a minimum in the energy and in the p value for

an optimal interface was implied in this approach, so

that the OR between two crystals corresponding to an

optimal interface can be identified according to a mini-

mum value of p. Bollmann argued that: ‘‘If the problem

is to locate an energy minimum without expecting

quantitative indications on the energy values, it is suffi-

cient to replace the energy by a function which can be

anticipated to vary monotonically with the energy’’

(p. 227 in [9]). This argument highlights the physical

basis that explains why it is possible to identify an

optimal interface associated with an energy minimum

from a geometric approach.

Instead of using ‘‘optimal interfaces’’, the present article

follows the notation given by Sutton and Balluffi [2] and uses

the term ‘‘singular interfaces’’ for candidates of interface

facets. According to their classification [2], a sharp interface

may be singular, vicinal, or general according to whether the

associated energy is at, near or far from a local minimum,

respectively. Different types of interfaces are also distinct in

their structures. The aim of the present study is to distinguish

the singular interfaces according to their structures. How-

ever, unless an interface is completely free of any defect, it is

impossible to conclude whether a defect-containing inter-

face is singular or not only according to its structure. A

singular interface must be examined in contrast to any

interface in its vicinal orientation. The structure in a singular

interface is distinct from that in a vicinal interface by the

absence of at least one type of defects, rather than by a low

quantity of a type of defects [10]. This distinction is con-

sistent with the structural difference between a singular and a

vicinal surface, described in the terrace-ledge-kink model for

a surface structure (Ref. to [1]). For example, ledges are

absent in a typical singular surface but they are present in any

of its vicinal surfaces. In the present study, the singularity

rather than a numerical parameter, such as aforementioned p,

will be employed as the key character to identify the singular

interfaces.

In addition to the ledge defects, which may be present in

both surfaces and interfaces, dislocations are the major

interfacial defects in most singular and vicinal interfaces. A

correct description of the interfacial dislocation structures

is essential to identify singular interfaces in terms of dis-

location defects. The O-lattice theory [9, 11] developed by

Bollmann is the most general geometric theory for quan-

titative description of a fit/misfit distribution in three

dimensions (3D) and the possible dislocation structure in a

general interface. Extensions of this theory have been made

to enhance the calculation method [12, 13]. The overall

theory was considered to be ‘‘extremely powerful and

capable of describing the interface/facet structure in con-

siderable detail’’ in a recent review [7]. To recognize

Bollmann’s significant contribution, the organizers of iib

2010 have arranged a Bollmann Memory Section in iib

2010. In light of this event, it is worth reviewing the main

concept of the O-lattice including its extensions and clar-

ifying some misunderstandings about this powerful theory

in literature.

This article will start with a general discussion of the

possible candidates of singular interfaces. It will be followed

by explanations and derivations of the main formulas of the

O-lattice theory, which will be applied to determine the

dislocation structures and to identify the geometry of sin-

gular interfaces. Like the low index reciprocal vectors (gs)

used for describing the candidates for singular surfaces, a

set of discrete reciprocal vectors, Dgs, will be used for

describing the candidates for singular interfaces. The link

between the singular interfaces and measurable Dgs will be

elucidated. Ambiguity about the O-lattice calculation and a

comparison of the O-lattice theory with the Frank–Bilby

equation to calculate the dislocation configurations will be

clarified. The limitation of geometrical approaches will be

discussed.
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Singular interfaces in terms of defects

Two types of interfacial defects considered here are ledges

and dislocations. These defects distribute at high energy

locations in an interface, with the defect-free regions in

lower energy. To specify each type of defects, the structure

of the low energy regions needs to be clarified.

Singularity in terms of ledges

Ledge defects in an interface are identified by their step

topological feature. The low energy regions between these

defects are the terraces in an interface. A common type of

terraces in an interface are the same as that in a free surface

of a crystal, namely they are parallel to densely packed

atomic planes. Such type of ledges may be called atomic

ledges. Since these atomic ledges are common in surfaces

and interfaces, the candidates for the singular interfaces in

terms of these ledge defects can simply be identified

according to low index planes in the crystal basis, as for

singular surfaces. When the atomic ledges have an over-

riding effect in the interfacial energy, the resultant singular

interface is possibly free of atomic ledges. An interface

parallel to a low index plane of one crystal may not be

parallel to the low index plane of the other crystal. The OR

permitting a ledge-free singular interface should allow two

low index planes from different lattices to be parallel to

each other. The resultant interface is singular with respect

to the change in the interface orientation (IO) and in the

OR if the change in the OR destroys the parallelism

between the planes. However, if the change in the OR is a

rotation in the parallel planes, it does not alter the singu-

larity condition. Thus, the singularity in terms of the ledge

defects confines four of five degrees of freedom in the

geometry of the singular interface, so that the singular

interface is parallel to low index planes from both lattices.

The remaining one degree of freedom in the OR may be

constrained by minimization of misfit in the interface

plane.

The above consideration agrees with the following

maximum hdi condition indicated by Sutton and Balluffi

[2]. They noted that ‘‘the lowest possible interfacial ener-

gies in a system are associated with the highest possible

values of hdi’’ (p. 274 in [2]) where hdi is the average

interplanar spacing of the lattice planes parallel to the

interface. In terms of reciprocal vector, a candidate for

singular interface according to singularity in the atomic

ledge structure is defined by a low index g from both or

either lattice. The interplanar spacing in each lattice is

inversely proportional to |g|. Therefore, a singular interface

normal to a pair of parallel low index g of different lattices

will be associated with a large hdi. The maximum hdi
criterion implies a dominant effect of the ledges on the

interfacial energy. This criterion does not have a general

applicability, since the atomic ledge energy in metallic

materials may be weak [14]. That is why it conflicts the

irrational ORs and irrational habit planes frequently

observed in metallic systems [6]. To explain the singular

interfaces in these cases, one has to consider the other type

of defects—dislocations, which is a major concern in this

article.

Singularity in terms of dislocations

The dislocation defects for the singularity in an interfacial

structure are the misfit dislocations. Good fit is maintained

in the low energy regions between these defects. For

interfacial misfit to be evaluated, it is important to specify

the reference of ‘‘fit’’. A commonly known fit is full

coherence, but this type of fit is not general since other

kinds of fit also exist in interfaces. Bollmann [11] has

named the reference of fit as a preferred state. The pre-

ferred state represents a particular structure of fit that tends

to exist at individual locals in an interface. For simplicity,

the present study assumes a single preferred state in one

interface, if not specified otherwise. The borders where the

preferred state discontinues define the locations of the

misfit dislocations. The Burgers vector of a dislocation is a

translation displacement between two lattices. To preserve

equivalent structures of a specific preferred state in any

adjacent locations, the Burgers vector of the dislocation

between the locations must accord with the preferred state.

For example, for the fully coherent structure to repeat in

the adjacent regions separated by a dislocation, the Burgers

vector must come from the lattice translation vectors of the

displaced lattice, which can be either lattice. Therefore,

identification of the preferred state is essential in a dislo-

cation structure description.

Two types of preferred states have been classified by

Bollmann [11]. One is the primary preferred state, which is

‘‘the single crystal state’’ (p. 174 in [11]). It describes a

one-to-one fit of lattice planes, rows, and points. The cor-

responding misfit dislocations are the primary dislocations,

but usually the term ‘‘primary’’ is omitted. The other type

is called secondary preferred state, which is a ‘‘coincidence

state’’ or ‘‘fractional coincidence state’’ (p. 174 in [11]).

While the primary preferred state and the associated

structure are unique for a given system, the secondary

preferred states and corresponding structures for a given

system may be various. Bollmann [11] indicated that

periodicity is a necessary (but insufficient) condition for a

secondary preferred state. In further applications [6] the

structures in a plane with dense coincidence site lattice

(CSL) points have been taken as the preferred state, rather

than a 3D CSL. In terms of structural units, which may be

more close to the relaxed interfacial structure than the 2D
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CSL pattern, a secondary preferred state may be described

with a periodic distribution of small structural units in 2D.

These structural units are usually larger than the primitive

unit cells in either or both lattices. The interface geometry

required to realize a 2D periodic distribution of small

structural units in limited types is equivalent to that

required to build a 2D CSL of the same periodicity.

Therefore, the geometry for a 2D CSL can be used for

identifying the geometry for a structure in a secondary

preferred state. The secondary dislocations, which are

present at locations where the 2D secondary preferred state

discontinues, can also be interpreted either as discontinuity

of the 2D CSL or as minority structural units in the inter-

face. A well-known example of an interface in a secondary

preferred state is a large angle grain boundary when the

misorientation is close to some special value so that a CSL

in 3D can be constructed with or without a small constraint.

Usually when the lattice parameters of the two phases

differ significantly, a secondary preferred state also occurs

in singular interphase boundaries. The observed faceted

interfaces can guide the construction of a constrained CSL

for a preferred state in faceted interfaces [15, 16].

When the dislocations have a dominant effect in the

interfacial energy, a singular interface is identified according

to singularity in terms of the dislocation defects. As expec-

ted, an interface exhibiting a continuous preferred state is a

singular interface. This interface is free from any disloca-

tions. In contrast to an atomic ledge-free interface, which

only requires a proper OR, a dislocation-free singular

interface requires special lattice parameters of the crystals

separated by the interface, in addition to a proper OR.

However, the lattice parameters in a heterophase system and

the OR in a homophase system do not usually permit exact fit

to be realized in any interface. Therefore, misfit from a

preferred state usually exists in an interface and misfit dis-

locations may be present in the interface. The key to iden-

tifying a singular dislocation structure is its singularity

character. Namely, a structure is regarded singular fully with

respect to the IO if any small deviation in the IO will always

lead to the presence of one or more new types of dislocations

in the structure. Eliminating one or more types of disloca-

tions is possible in some interfaces that correspond with

special ORs. A structure is regarded as singular with respect

to the OR, if both forward and backward deviations in the OR

will always add one or more new types of dislocations to the

structure. The singularity feature stated above will be used to

identify singular interfaces in either primary or secondary

preferred state.

Remarks about defect terminology and classification

Interfacial structures are often classified according to the

degree of coherency. While the classification is convenient

for applications, the terminology requires clarification. The

concept of coherency mainly applies to interfaces in the

primary preferred state. It is reflected in the traditional

classification of interfacial structure—coherent, semico-

herent, and incoherent interfaces [1, 17]. This classification

is inadequate because the interfacial structures in second-

ary preferred states are missing [17]. To encompass these

structures in the classification, we extended the present

three types by the addition of a new class of interfaces. The

more thorough classification consists of the following four

classes of structures:

1. Coherent structure, in which primary preferred state is

realized continuously so that ‘‘the lattices match exactly

at the interface, and ‘corresponding’ lattice planes and

directions are continuous across the interface’’ as

defined by Christian (p. 361 in [17]). A typical example

of an interface containing a coherent structure, i.e., a

coherent interface, is a coherent twin grain boundary.

2. Semicoherent structure, in which the coherent areas

are separated by discrete misfit dislocations. A typical

example of a semicoherent interface is a small angle

grain boundary [17]. While the term ‘‘semi’’ may

imply half coherent, this term is followed here since it

has been adopted in relevant books used in worldwide

classrooms [1, 2, 17, 18].

3. CS-coherent structure, in which a secondary preferred

state is realized either continuously or locally, sepa-

rated by the secondary misfit dislocations or ledges.

‘‘CS’’ can be considered as abbreviation of ‘‘coinci-

dence state’’, as defined by Bollmann [11] for the

secondary preferred state. The term of ‘‘CS-coherent’’

may also be regarded to stand for ‘‘coherent at

coincidence sites’’, so that ‘‘CS’’ is in consistent to

the abbreviation in broadly used ‘‘CSL’’, which is used

for describing the periodicity in the secondary pre-

ferred state in a CS-coherent structure. A typical

example of a CS-coherent interface is a special large

angle grain boundary, corresponding to a small R.1

4. Incoherent structure, in which neither type of preferred

state can hold in any area of meaningful size in the

structure. One reason to form incoherent structure is

because the misfit from any preferred state is too large.

With a tendency to form a preferred state, this structure

may still exhibit random coherency. A typical example

of this type of incoherent interfaces is a general large

angle grain boundary. Another reason is lack of

tendency to form any preferred state due to weak

interaction across the interface. An example or illustra-

tion of this type of incoherent structure can be found in

[1] (i.e., p. 304 and 416).

1 R is the ratio of the unit cell volume of the CSL to that of a crystal

lattice.
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While the aforementioned examples are specific to

intergranular boundaries, the classification is also valid for

interphase boundaries, which constitutes the central part of

the present study. For both intergranular and interphase

boundaries, only the structure of coherent interface is dis-

tinct from the others, the spectrum of the other three types

of interfacial structures is not abruptly discontinuous.

The difference between a semicoherent interface and a

CS-coherent interface may be indecipherable when the

calculated dislocation spacing in a semicoherent interface

approaches to a few atomic distances. The distinction

between a CS-coherent interface and an incoherent inter-

face becomes vague when the structure units are assorted

with many types, thus disrupting the regularity. However,

this uncertainty does not affect the present investigation of

singular interfaces, since the preferred state in the structure

of an observed singular interface in terms of dislocation

defects is usually definite.

Which of the four types of interfaces may be singular?

The answer depends on what defects are considered for

the singularity analysis. Because atomic ledges may be

absent in any of the four types of interfaces, a ledge-free

singular interface may have any of these structures when

the atomic ledges have an overriding effect in the inter-

facial energy. In other words, an incoherent interface can

be a singular interface, identified in terms of singularity in

ledge defects. On the other hand, when the dislocation

defects have a dominant effect, a coherent interface, free

from any dislocation, is certainly a singular interface. A

semicoherent and CS-coherent interface may also be a

singular interface, if the structure exhibits the singularity

property, i.e., an arbitrary deviation in the IO and OR will

cause presence of new type(s) of dislocations. An inco-

herent interface cannot be singular in terms of disloca-

tions, as expected.

The classification based on coherency greatly restricts

the geometry in the 3D space for the ORs corresponding to

the candidates of singular interfaces in terms of dislocation

defects. This is because the misfit in a coherent, semico-

herent or CS-coherent interface must be small enough for

the regions where the preferred state holds to be suffi-

ciently large. In other words, the misfit must be small for

the possible dislocations to be physically perceptible. For a

given system, small misfit from a preferred state is per-

mitted by ORs that occupy a minor portion of the OR

space. In such a narrow region, proper ORs and discrete

IOs for the singular interfaces can be explored according to

the dislocation configurations. Beyond these narrow

regions in the OR space, in the rest vast regions in the 5D

BGP space, incoherent interfaces are obtained. As can be

expected, a variation in the OR and IO in these regions

does not make a physically significant change in the

incoherent structure and energy.

Unlike the ledge-free condition that clearly identifies the

candidates of singular interfaces and limits four degrees of

freedom in the 5D BGP space, the condition for the singular

interfaces dominated by dislocations is not so straightfor-

ward. Given a narrow region in the 3D OR space that allows

for a preferred state to be realized, what dislocation structure

may be present in the interface and what geometry corre-

sponds to a singular interface? These questions can be

answered with the following premises: (1) The Burgers

vectors are fixed with a selected preferred state; (2) the misfit

distribution in an interface is a function of the IO and OR; (3)

any misfit from the preferred state in an interface must be

accommodated fully by the dislocations. The first and second

premises are the results of a spontaneous process driven by a

decrease of interfacial energy. The misfit distribution in an

interface and the Burgers vectors of the interfacial disloca-

tions depend on the preferred state formed in this process.

Once a preferred state that can represent the result of the

spontaneous process is properly identified, a set of Burgers

vectors can be defined correctly. The third premise is an

assumption. Without it, the dislocation structure of an

interface would not need to vary with the IO and OR.

Searching for the candidates of singular interfaces

according to the singularity in terms of dislocations is the

major concern in the rest of the article. With the above

premises, the misfit distribution and hence the dislocation

structure for a given OR and IO can be calculated with a

proper geometry model. Only in special directions can the

associated misfit be fully cancelled by one set of disloca-

tions, and only with a particular orientation can an interface

contain a minimum set of dislocations. The first step in the

calculation is to determine the dislocation structure in a

general interface. The O-lattice theory [9, 11] provides a

simple but general tool for quantitative descriptions of

interfacial dislocations. The main concept and major for-

mulas of this theory will be briefly reviewed below.

Formulation of the O-lattice

Main concept and core equations

The construction of an O-lattice is a conceptual operation

by penetrating two rigid lattices into each other, with one

point from each lattice at the origin [9, 11]. This operation

yields a distribution of good and poor matching zones. For

simplicity, let us consider the primary preferred state first.

Provided that the misfit strain is small, as required for a

semicoherent interface, the good matching zones of a

considerable size will form a periodic pattern. Figure 1 is

an illustration of a 2D O-lattice formed by the overlapping

(100) planes of two identical simple cubic lattices rotated

from each other by a small angle. The center of each good
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matching zone defines an O-element, and the periodic

distribution of the O-elements form the O-lattice.2 In the

direction of the rotation axis, normal to the plane of the

figure, the 2D O-lattice pattern in Fig. 1 can be obtained in

each layer of the lattice plane. From this, one obtains a line

lattice in 3D, the O-line lattice with the lines parallel to the

rotation axis, as illustrated in Fig. 2. The poor matching

regions around each O-line element form an O-cell struc-

ture. The individual O-cells contact at the O-cell walls,

which define the locations in the poorest match. The

structure of the O-lattice depends on the structures of the

crystal lattices and the OR. In general, the O-elements in

3D may take a shape of a point, a line, or a plane.

A selected interface is then cut through the O-lattice.

The traces of the O-cell walls in the interface, as the

intersections of the interface with the O-cell walls, are the

poorest matching regions in the interface. These O-cell

wall traces have been considered to represent the possible

locations of dislocations [9]. Three interfaces and the dis-

location structures in the interfaces are illustrated in Fig. 2.

In the twist grain boundary normal to the rotation axis,

there is a square net consisting of two sets of screw dis-

locations. In the symmetric tilt grain boundary containing

the rotation axis, there is a set of parallel dislocations. In

the inclined boundary, there are two sets of dislocations,

including one set of mixed dislocations. While Fig. 2

clearly illustrates the relationship between the O-lattice/

O-cell structures and the structures of interfacial disloca-

tions, these cases are not general and may be misleading.

Only when an O-element or an intersected O-element is

found in each area separated by an O-cell wall trace, to

serve as the center of the coherent zone, can the O-cell wall

trace represent dislocation between the coherent zones.

Otherwise, it is inappropriate to treat an O-cell wall trace as

the position of a dislocation. All three selected interfaces in

Fig. 2 satisfy the above requirement. However, an interface

in an arbitrary orientation may not satisfy the above

requirement, especially when the O-lattice is a point lattice.

As explained later, the dislocations structure in any

singular interface can meet the above requirement.

The O-lattice can be calculated according to a misfit

analysis [9]. In a selected orthonormal coordinate basis, we

may express the two lattices (specified as lattices a and b,

respectively) according to a given OR. Any position in

lattice a can be defined with a vector xa, and the same

holds for lattice b with xb. In the following derivation, we

again assume an interface in the primary preferred state.

Let us consider the O-cell centered at the origin. In this

center O-cell, a group of points in lattice a will become

coherent with a group of points in lattice b in a one-to-one

base in a semicoherent interface. Upon relaxation, each

coherent pair spontaneously forms from the nearest

neighbor points in the O-cell. Therefore, the displacement

due to the misfit strain in the coherent zone is established

between pairs of points in the nearest neighbor. Let a pair

of such points be specified by two vectors, xbo and xao

(column vectors). The misfit displacement between the

points is defined by

Fig. 1 Illustration of a 2D O-lattice, dots and circles represent lattice

points in different lattices, related by a small angle rotation. Two

principal O-lattice vectors, xO
1 and xO

2 and their corresponding Burgers

vectors b1 and b2 defined in the lattice with (red) dots are marked

Fig. 2 Illustration of an O-line lattice, O-cell walls, and possible

dislocation structure in a twist, a symmetric tilt, and a general grain

boundary

2 The O-lattice has been defined as a lattice of origins according to

Bollmann [9, 11]. In this sense, the ‘‘O’’ is the abbreviation of origin.

However, it can also be considered as the abbreviation of ‘‘zero’’ [11],

as used in early publications by Bollmann, e.g. [9]. In this article, the

letter O is adopted, since it is well-accepted pronunciation in the

community with the O-lattice applications.
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Dxm ¼ xbo � xao: ð1Þ

It is convenient to relate such a pair of xbo and xao with a

transformation or a deformation matrix, so that

xbo ¼ Axao ð2Þ

For the example in Fig. 1, A is simply a rotation matrix

with a small rotation angle. In the O-lattice theory [9], the

displacement is associated with a point in lattice b. It will

be called the identification lattice for convenience. Based

on Eqs. 1 and 2, the misfit associated with xbo can be

determined from

Dxm ¼ ðI� A�1Þxbo ¼ Txbo: ð3Þ

where I is a unit matrix, and T = I – A-1, describing the

displacement field.

Next we determine the misfit displacement associated

with a general point, xb, in the identification lattice. One

can calculate the displacement associated this point due to

the displacement field by

Dx ¼ xb � xa ¼ Txb: ð4Þ

When the point defined by xb is out of the center O-cell,

the above Dx does not define the misfit associated with xb.

This is illustrated in Fig. 3, where Dx is larger than a

Burgers vector. The misfit displacement associated with the

point defined by xb is evaluated between it and the point in

lattice a in its nearest neighbor. This particular point in a
can be translated from xa by a lattice translation vector in a.

In the example in Fig. 3, the lattice translation vector is b2,

as indicated in the figure. In general, a translation vector

can be written as Rkjb
L
aj, where bL

aj is a Burgers vector, kj is

an integer, and j denotes different Burgers vectors and

corresponding integer coefficients. Therefore, a misfit

displacement associated with a general xb can be

expressed by

Dxbm ¼ xb � ðxa þ Rkib
L
aiÞ ¼ Txb � Rkib

L
ai; ð5Þ

upon the condition that |Dxbm| B |Dxbm ± baJ
L |. From Eq. 5

one notices that no misfit is associated with xb if

Txb ¼ Rkib
L
ai: ð6Þ

Equation 6 is a general equation for all possible O-

elements, as defined by the positions of no misfit. When

Rank(T) = 3, there is a one-to-one correspondence

between the points in lattice a (called reference lattice)

and the O-point. One can construct the O-lattice using three

non-coplanar principal O-lattice vectors, xO
1 , solved from

[9]

TxO
i ¼ bL

ai: ð7Þ

The above is the core O-lattice equation derived by

Bollmann [9]. It states that the relative displacement

associated with a point of lattice b at xO
i is a Burgers vector

in lattice a, bL
ai. When the Rank(T) \ 3, periodic O-

elements are usually not solvable for a heterophase system.

However, it is often possible to define a single set of O-

lines for Rank(T) = 2, and for one layer of the O-plane for

Rank(T) = 1. This solution of O-lines or O-plane is

sufficient to identify one singular interface of the system.

Usually, an O-element is not found at the position of a

lattice point, as seen in Figs. 1 and 3. However, the misfit

displacement always increases linearly from each O-ele-

ment. Thus, the misfit associated with the lattice points in

the vicinity of an O-element is always small. Provided that

the size of the O-cells is considerably larger than the

atomic spacing, each O-element can represent a true center

of a coherent region in a relaxed structure. If xO
i happens to

end at a lattice point in b, then xO
i defines a coincidence

site, where two lattice points exactly match. Therefore,

given a proper OR and lattice parameters, the CSL can be

calculated as a sublattice of the O-lattice for the primary

preferred state, even though the primary preferred state

may be imperceptible when the O-cell is too small.

Selection of A

Consensus has not been reached yet about whether the

misfit distribution defined by an O-lattice can be used to

calculate a dislocation structure. A common criticism to a

dislocation model, including the O-lattice theory [9] and

with the Frank–Bilby equation [19, 20], points out that

‘‘there is an infinite number of dislocation descriptions of a

particular interface’’ (p. 93 in [2]). This ambiguity stems

from the symmetry operations of either lattice. This oper-

ation does not change the relative positions of the atoms,

but was speculated to make changes in matrix A, and

hence influencing the calculated O-lattice and dislocations

Fig. 3 Comparison of displacement (Dx = xb -xa) and misfit dis-

placement (Dxbm = xb - xa - b2) associated with a point defined by

xb. Dots (red) and circles (blue) represent points in lattice a and b,

respectively
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structures. Therefore, in order to describe a true dislocation

structure, a careful selection of a proper and unique A is

critical to the model. Bollmann has provided the following

criterion for A: ‘‘The nearest neighbors in both lattices are

related by that the transformation A selected from various

possibilities for which the determinant |I – A-1| acquires

the smallest absolute value’’ (p. 165 in [9]). Though the

above statement may hold true for some cases, the nearest

neighbors may not always be related according to mini-

mization of |I – A-1|. A widely used example to show the

drawbacks of this criterion [2, 17] is that a rational sym-

metrical tilt small angle grain boundary may be described

as a coherent twin boundary, corresponding to zero value

of |I – A-1|. However, a more physically realistic

description is a semicoherent boundary containing an array

of edge dislocations (as seen from Fig. 2). In this particular

example, the nearest neighbors are not related by an

A selected from the twin relations for |I – A-1| = 0, but by

a small angle rotation as can be seen from Figs. 1 and 3.

The above ambiguity in selecting A can be eliminated by

clarifying the preferred state. It is crucial that the misfit is

evaluated according to the smallest deviation from the

unique preferred state. For an interface in the primary pre-

ferred state, it is straightforward to identify potential

coherent point pairs by forcing local coherency, as seen in

the standard dislocation model of a small angle grain

boundary in a textbook (e.g., [18]). In the center O-cell,

such a relationship between pairs of points indexed in their

own lattices can be called lattice correspondence, as used in

the phenomenological theory of martensite crystallography

(PTMC) [21]. According to the positions in a common

coordinate basis for a set of three related non-coplanar

vectors xboi and xaoi (i = 1, 2, 3), matrix A is uniquely

determined by A = XaoXbo
-1, where Xao = [xao1, xao2,

xao3], and Xbo = [xbo1, xbo2, xbo3](The vectors are 193

column vectors in the matrixes). The rotation matrix

A determined from the unique corresponding vectors xboi

and xaoi, expressed in any common coordinate basis can

lead to a correct periodicity in misfit variation, as shown in

Fig. 1. For the case of a small angle grain boundary, one

may simply choose [100]a, [010]a, [001]a for xao1, xao2,

xao3, respectively. If the basis of one lattice is rotated with

respect to the other by a small angle, then the corresponding

xbo1, xbo2, xbo3 are [100]b, [010]b, [001]b. When a sym-

metry operation is applied to either lattice, say b, the axes

close to [100]a, [010]a, [001]a become [010]b, [-100]b,

[001]b for example. This operation obviously increases the

angle between the two lattice bases. According to the

nearest neighbor principle, a new lattice correspondence

will be taken, but the positions of xboi in the selected

common coordinate basis remain the same. Therefore, a

symmetry operation of either lattice only changes the var-

iant of OR, but the matrix A is unchanged. A step-by-step

calculation of the O-lattice for an fcc/bcc interface has been

provided by Bollmann [22]. In this application, the well-

known Bain lattice correspondence, commonly used in the

PTMC [21], was assumed at the beginning of this calcula-

tion. With this lattice correspondence, the matrix A for the

given OR is uniquely determined.

The lattice correspondence according to the possibly

forced coherence in the center O-cell is consistent with the

nearest neighbor principle summarized by Bollmann, who

states that ‘‘In the proximity of the origin, the transforma-

tion A must relate the nearest neighbors in the two lattices’’

(p. 184 in [9]) (The criterion of the smallest |I - A-1| was

also suggested in his summary, but this part is abandoned to

avoid a confusion). This principle ensures that the dis-

placement associated with xbo, as determined from Eq. 3, is

the misfit displacement between xbo and its nearest xao.

The nearest neighbor principle is also applicable to a

secondary preferred state. Usually, selecting a correct A for

a CS-coherent interface is not as straightforward as for a

semicoherent interface. In the primary preferred state, a

group of continuously distributed lattice points within an

O-cell can become coherent in a semicoherent interface. In

contrast, in a secondary preferred state, the points that can

become coherent with their nearest neighbors across the

interface may be separated by non-coherent points within

an O-cell. The lattice correspondence between these frac-

tional coherent points (i.e., coincident sites) is essential for

determination of A. One needs to draw a reference of the

secondary preferred state, in which either lattice is

deformed so that the points related by the lattice corre-

spondence can form a constrained CSL. According to this

correspondence, three small none-coplanar vectors from

each lattice can be selected to calculate the A matrix in the

same way as that for the primary preferred state. An

example of the selection of a lattice correspondence for a

secondary preferred state and a calculation of secondary

dislocations can be found in a study of the habit planes

between cementite and austenite [15].

Determination of dislocation structures

Calculation of the O-cell walls

In general, the O-lattice structure alone is insufficient in

specifying the O-cell structure. The possible dislocation

structure is derived from the geometry of the O-cell.

According to Bollmann [9], the position of an O-cell wall is

confined by the equal misfit condition. This states that the

misfit displacement associated with any point, xcb, in an O-cell

wall of the center O-cell should have identical magnitudes

with respect to the origin and the next O-element separated by

the wall. This condition can be expressed as [23]
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Txcb

�
�

�
� ¼ Tðxcb � xO

i Þ
�
�

�
� ¼ Txcb � bL

ai

�
�

�
�: ð8aÞ

It can be transformed to the following form

bL0
ai=jbL

aijTxcb ¼ jbL
aij=2; ð8bÞ

where prime ‘‘0’’denotes a transposition operation to a

vector (or to a matrix referred to later). Equation 8a is

equivalent to but simpler than the general equation for the

O-cell wall in Bollmann’s book [9]. One solution of

xcb = xO
i /2 was provided in the book, but this was insuf-

ficient in specifying the O-cell wall.

It is convenient to define a set of periodically distributed

O-cell walls with a reciprocal vector, cO
bi, such that the

O-cell walls are normal to cO
bi and their spacing is given by

1/|cO
bi|. Since the O-cell walls are symmetrically placed with

respect to the origin, the projection of a general point xcb in

the center O-cell onto such a reciprocal vector is 1/(2|cO
bi|),

namely, cO0
bi /|cO

bi|xcb = 1/(2|cO
bi|), or

cO0

bi xcb ¼ 1=2: ð9Þ

Comparing Eq. 8b and 9, one obtains [13, 23]:

cO
bi ¼ T0b�ai; ð10aÞ

where

b�ai ¼ bL
ai=jbL

aij
2; ð10bÞ

is a reciprocal Burger vector in lattice a. It represents a set

of parallel faces (normal to bL
ai) of the Wigner–Seitz cells

in lattice a. Therefore, each set of O-cell walls corresponds

to a bL
ai, which is the Burgers vector of the dislocations to

be determined from the geometry of the O-cell walls. This

b�ai is different from the reciprocal Burgers vector defined

by Hirth and Lothe [24]. In their definition, a reciprocal

Burgers vector for a set of dislocations is actually a reci-

procal vector for a set of (low index) lattice planes that

contain two other Burgers vectors (from the three selected

non-coplanar bL
ai) that are not the Burgers vector of the

dislocation set. These reciprocal vectors are represented by

gp in the present article to follow the convention of electron

microscopy terminology in experimental study, as will be

used later.

It can be shown (Ref. Eq. 12) that Eq. 10a is an

O-lattice transformation in reciprocal space, so that the

O-cell is transformed from the Wigner–Seitz cell of lattice

a [13]. When Rank(T) = 3, the number of O-cell faces is

equal to the number of faces of the Wigner–Seitz cells in

lattice a, which usually has the same number as the number

of attainable bL
ai. The above result agrees with Bollmann’s

interpretation of the O-cells [9], which has stimulated the

derivation of the expression in Eq. 10a. As seen from the

difference in Eqs. 7 and 10a, cO
bi is not generally parallel to

xO
i , so that the O-cells are not the Wigner–Seitz cells of the

O-lattice. Exceptions occur when the misfit strain field is

isotropic in appropriate dimensions, such as an isotropic

deformation for an O-point lattice or a rotation in a close

packed plane for an O-line lattice [23]. Then, both O-lattice

and O-cell will inherit the symmetry of either lattice, and

hence the shape of the O-cell is the same as the shape of the

Wigner–Seitz cell of either lattice. This explains why the

O-cells are the Wigner–Seitz cells of the O-lattice in many

O-lattice illustrations with simple examples of the above

cases, such as in Fig. 1. To avoid misleading by these

special examples, it is emphasized here that the O-cells are

generally not the Wigner–Seitz cells of the O-lattice. It is

worth noting that the walls of a Wigner–Seitz cell in lattice

a and its transformed O-cell are usually not continuous in

space. They stop at intersections with two other walls, such

as where three walls meet. The O-cell structure in Fig. 2

only consists of two sets of walls, so those walls can extend

endlessly.

The O-cell structure defined by Eq. 10 is based on

evaluation of displacement associated with points in lat-

tice b as the identification lattice. Usually, if an identi-

fication lattice changes to lattice a, the O-cell geometry

will differ slightly, as indicated by Bollmann [9]. Only

for an isotropic transformation, will different identifica-

tion lattices lead to an identical O-cell structure [23]. In

this case, one can calculate cO
bi from the vector form of

cO
bi = Db�i = b�ai - b�bi, where b�bi is a reciprocal Burgers

vector in lattice b. In this special case, one finds that

b�bi = (A-1)0b�ai. A recent investigation indicated that the

discrepancy in the dislocation structure due to different

selections of the identification lattice only occurs if the

structure dislocations comprise of more than two sets of

dislocations [23]. This is because dislocations in a one-set

structure run along the unique invariant line in the

interface, whereas those in a two-set structure run along

xO
i , which is independent of the selection of an identifi-

cation lattice. One attempt involved using the average of

O-cell structures from both identification lattices [23].

However, the difference between the observed disloca-

tions in a real boundary and the calculated configuration

is likely more prominent in a structure of three-set dis-

locations than that in a structure of two- or one-set dis-

locations. For a three-set structure, the deviation of the

calculated configuration from the observed result is pos-

sibly larger than the discrepancy due to different identi-

fication lattices. It would thus be impractical to refine the

O-cell wall results when there are three sets of disloca-

tions. Therefore, lattice b will be used in the following

calculation of the dislocation structures.
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Calculation of interfacial dislocations

When periodic dislocations are observed in a semicoherent

interface without long-range strain, there is no reason for

the dislocation periodicity to disagree with the misfit dis-

tribution in the interface, provided that the preferred state

of ‘‘fit’’ in the dislocation-free regions is correctly defined.

A calculated dislocation structure based on the O-lattice

and the O-cells should closely resemble the true dislocation

configuration, since the structure of the O-lattice and the

O-cells represent the good and poor matching regions in

space, respectively.

According to Bollmann [9], the intersections of an

interface with the O-cell walls, or the O-cell wall traces in

an interface, represent the dislocations. It must be empha-

sized that for an O-cell wall trace to represent a dislocation,

each of the two areas separated by this trace should contain

an O-element. This condition (short for ‘‘trace condition’’

for convenient) ensures equivalent relaxation in both sides

of the trace, with the O-elements serving as the centers of

the coherent regions. Therefore, the dislocation position

can be approximately represented by the O-cell wall trace

bisecting a pair of O-elements. To calculate the spacing of

a set of periodic dislocation, we assume that the interface

satisfy the above condition. Specifically, provided that

Burgers vector of the dislocations is bL
ai, the interface must

contain the corresponding xO
i connecting a row of periodic

O-elements. Thus, there is always an O-element between

adjacent traces of O-cell walls cO
bi corresponding to the

same bL
ai. Given the unit normal (n) of such an interface,

the direction of the dislocations is defined by the following

vector [13]:

ni ¼ cO
bi � n; ð11aÞ

and the dislocation spacing is simply given by

D ¼ 1= nij j: ð11bÞ

While the derivation of the O-cell walls assumes the

existence of an O-point lattice, a representation of a set of

O-cell walls with cO
bi defined by Eq. 10a remains valid for

O-lines or O-planes if they are periodic. The expressions

for dislocations in Eq. 11 are applicable, provided that each

of the two areas separated by an O-cell wall trace contains

an O-line element or intersected O-line or O-plane element.

For example, the dislocation structure in any one of three

small angle grain boundaries in Fig. 2 can be calculated

with the aforementioned equations for the dislocations,

especially in the inclined boundary, for which a simplified

formula is not available. In this special case, any of

the three interfaces can meet the trace condition, so that the

O-cell wall traces in the interface can represent the

dislocations.

Depending on the interfacial orientation n and the number

of bL
ai to solve xO

i for the O-elements intersected by the

interface, an interface may contain 0, 1, 2, or 3 sets of peri-

odic interfacial dislocations. Eq. 11 is applicable to each set

of dislocations in an interface, by taking the cO
bi corre-

sponding to individual bL
ai. The resultant structure consists of

continuous dislocation lines only if the interface contains one

or two sets of dislocations. Otherwise, a three-set structure is

a network consisting of dislocation line segments stopping at

points where three dislocation segments meet. Specially, if

an O-plane exists, all cO
bi determined from Eq. 10 will be

normal to this O-plane, even though periodic O-planes are

not solvable. Then, no intersection line can be obtained if an

interface is parallel to the O-plane, leading to a dislocation-

free (fully coherent) interface.

In special cases, if n is perpendicular to cO
bi and A is an

isotropic transformation in 2D, as occurs to symmetric tilt

and twist grain boundaries, or an epitaxial interface between

two phases of samestructures with slightly different lattice

parameters, the expression for the dislocation spacing is

particularly simple: D = 1/|Db�i | [23]. This unified formula

can be used to derive different D formulas for simple inter-

faces in textbooks, e.g., [18]: D = b/h for a special small

angle (h) grain boundary and D = b/d for an interphase

boundary with isotropic misfit (d), where b = |bL
ai|. The

agreement between the unified formula and well-known

formulas verifies of the O-cell based expression for dislo-

cations in general interfaces.

When an interface does meet the condition for O-cell

wall traces to represent the dislocations, the dislocation

structure in the interface can be estimated. For this case,

one may decompose the interface into various facets such

that the interface is microscopically stepped to pass along

O-elements in the adjacent O-cells. Therefore, each local

facet meets the trace condition. According to the associa-

tion between the xO
i connecting the adjacent O-elements

and the specific O-cell wall cO
bi corresponding to the same

bL
ai, the overall dislocations structures in different portions

of facets can be determined with Eq. 11. This concept has

been suggested by Bollmann [11], who has illustrated a

determination of a complicated dislocation structure in

stepped interfaces based on a one-to-one correspondence

between points in the b-lattice points (the reference lattice)

and the O-points. This general method was seldom utilized

by other researchers, probably because the spacing of

periodic dislocations is the major concern in most appli-

cations and locations of individual dislocations in non-

periodic structure are not usually demanded. The concept

of b-lattice is also useful if the O-lattice is unavailable in

3D, i.e., when Rank(T) \ 3. Bollmann [9] has suggested a

projection of b-lattice points in 3D onto a proper
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b-subspace. The structure of the two sets of parallel dis-

locations can be determined this way [25].

A comparison with the Frank–Bilby equation

The O-lattice theory is closely related to the Frank–Bilby

equation [19, 20], which is presented in a number books (e.g.,

[2, 24]) as a major method for calculating interfacial dislo-

cations. Bollmann [9] has considered that the O-lattice theory

is based on the Frank model. Christian [17] regarded the

O-lattice theory as a quantized version of the Bilby theory. The

Frank–Bilby equation can be equivalently expressed as

B = Tp, where B is the Burgers vector content associated

with p, which is a vector in an interface. Comparing the Frank–

Bilby equation with Eq. 6, one finds that B = Txb = Rkib
L
ai,

if p = xb. Therefore, mathematically, it is possible that both

the Frank–Bilby equation and the O-lattice theory provide

identical descriptions of the dislocation structure. In the fol-

lowing comparison one will see the advantage of the O-lattice

approach over the Frank–Bilby equation in several aspects.

First, in conventional applications of the Frank–Bilby

equation, the overall misfit is presumably accommodated

by up to three sets of dislocations with three non-coplanar

bL
ai in a system [1, 2, 24]. Usually there are more than three

Burgers vectors in a system, and hence there exist multiple

ways to decompose a particular B vector with the com-

ponents of three Burgers vectors, as also pointed out by

Christian [17]. This problem does not exist in the O-lattice

approach, which has taken all attainable bL
ai into consid-

eration. Only when the selected interface contains less than

three sets of dislocations and when the bL
ai for the dislo-

cations are properly included in the model using the Frank–

Bilby equation, can the calculations based on both

approaches yield identical results. If the Burgers vectors

were not selected properly, the calculation using the Frank–

Bilby equation may lead to a wrong dislocation structure.

Secondly, there is no unique description with the Frank–

Bilby equation if an interface contains more than three sets of

dislocations, as noted by Sutton and Balluffi [2]. This prob-

lem has been solved in the framework of the O-lattice. When

the direction of p is arbitrary, the number of types of the

Burgers vectors of dislocations across by the given p in

sufficient length may exceed three. Suppose that an O-point

lattice exists, and the Burgers vectors can be specified

according to the O-cell walls intersected by this p. Specifi-

cally, one can decompose p approximately into Rkix
O
i , with

each vector segment kix
O
i passing along the O-cells inter-

sected locally by p as far as possible. The resultant vector

chain linking the overall Rkix
O
i segments in the proper order

should form a zigzag path in the closest vicinity of p. Since

this decomposition of p into kix
O
i is virtually unique, a unique

B & Rkib
L
ai can be calculated according to Eq. 7.

Thirdly, while the dislocation spacing formulas for simple

structures can be obtained from both approaches, the

geometry of the dislocations is directly related to the Burgers

vector of the dislocations in the O-cell based formula, but this

is not the case in the formula based on the Frank–Bilby

equation. In addition, the derivation based on the O-cell

construction is much simpler. For example for a general

isotropic transformation, the dislocation spacing can

be expressed as D = 1/|Db�i | = |bL
ai||b

L
bi|/[|b

L
ai|

2 ? |bL
bi|

2

- 2|bL
ai||b

L
bi|cos(h)]� [23]. This formula is equivalent to

Eq. 2.103 in [2] (after correcting a minor mistake), which has

been derived in a more complicated way based on the Frank–

Bilby equation.

In summary, both the Frank–Bilby equation and the

O-lattice approach are based on the same displacement

field to determine the overall misfit. The O-lattice approach

provides a detailed method for decomposition of the total

misfit into discrete dislocations for a general interface,

while the approach based on the Frank–Bilby equation can

make proper decomposition mainly in simple cases. Thus,

the O-lattice approach has a broader applicability. For

simple cases, where both approaches are applicable, the

derivation based on the O-lattice is simpler, and the rela-

tionship between the Burgers vector and spacing of the

dislocations is clearer. Therefore, while the Frank–Bilby

equation is broadly appreciated, the advanced O-lattice

approach deserves more attention.

Description of singular interfaces with principal

O-lattice planes and Dgs

Description of singular interfaces with principal

O-lattice planes

Having introduced a method for calculating the dislocation

structure based on the O-lattice and O-cell structures, we

now return to the issue on identification of singular inter-

faces. When the effect of dislocations is dominant, a sin-

gular interface will contain a dislocation structure that

exhibits a singularity feature. As stated earlier, the dislo-

cation structure in a singular interface can be identified

comparative to an arbitrary interface in its vicinal IO and

OR, in that one or more types of dislocations must be

present in the vicinal interface. The number of the types of

dislocations in an interface depends on how many sets of

O-cell walls are intersected by the interface. The minimum

number of dislocations in a singular interface depends on

the dimension of the O-elements in the O-lattice con-

structed at the given OR. Therefore, the candidates for

singular interfaces are examined according to different

O-elements.
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Consider first the case of an O-point lattice. As seen

from the above discussions about the Frank–Bilby equa-

tion, an arbitrary p will possibly intersect many sets of

dislocations. Only when a line is along a principal O-lattice

vector xO
i , will it constantly intersect a single set of O-cell

walls. Therefore, along the direction of xO
i , there is a single

set of dislocations with Burgers vector of bL
ai; along any its

vicinal direction one finds one or more other types of

dislocations. Clearly, an interface containing two singular

directions along different vectors of xO
i is fully singular

with respect to any variation in the IO. Usually, three xO
i

may coexist in one plane, corresponding to three coplanar

bL
ai. Therefore, in the case where an O-point lattice exists,

the minimum number of types of dislocations in a singular

interface is either two or three, with coplanar Burgers

vectors. Any deviation in the IO will cause additional

type(s) of dislocations in a vicinal interface.

In the case where an O-line lattice exists, another sin-

gular direction is specified, i.e., the invariant line, xin.

Along xin, there is no dislocation, and along any of its

vicinal direction one finds one or more types of disloca-

tions. For this case, a singular interface must contain this

singular direction. The minimum number of types of dis-

locations in a singular interface is one. The corresponding

interface contains the periodic O-lines. The equivalent

condition is that the interface must contain xin and xO
i .

However, this xO
i is not fully singular, since another vector

that is a linear combination of xin and xO
i also intersect a

single set of dislocations. Any deviation in the IO from the

interface containing the O-lines will cause additional

type(s) of dislocations in a vicinal interface. In case where

an O-plane exists, obviously, the interface parallel to the

O-plane is singular. It contains no dislocation, and any

deviation in the IO will cause additional type(s) of dislo-

cations in a vicinal interface. This interface may be

considered to contain two xin in different directions.

A summary of the possible singular interfaces for differ-

ent O-elements is given in Table 1. In the table a singular

interface is characterized with two singular directions, s1 and

s2, which can be either xO
i or xin. A singular interface may

contain up to three sets of dislocations. The corresponding

vicinal interface must contain at least one more set of dis-

locations. A vicinal interface may contain as low as one set of

dislocations. Therefore, except for the singular interface

containing no dislocations, it is impossible to identify a

singular interface solely according to the number of the sets

of dislocations in the interface. Identification of the O-ele-

ments helps to clarify the uncertainty. As shown in Table 1,

corresponding to each type of O-element, the minimum

number of the set of dislocation is defined. Take the O-line

lattice in Fig. 2 for example. The singular interface should

contain a single set of dislocations. Therefore, the symmetric

tilt grain boundary containing a single set of dislocations is a

singular interface. The incline and twist boundaries con-

taining two sets of dislocations are not singular interfaces,

since a small deviation in the IO will not alter the types of

dislocations in these interfaces. However, if the O-lattice is a

point lattice, an interface containing two sets of periodic

dislocations is a singular interface. The planes containing

two or three xO
i in an O-point lattice, the plane containing the

O-lines, and the O-plane have been named as the principal

O-lattice planes for the O-lattice of different O-elements [6].

With this term, it is convenient to conclude that all principal

O-lattice planes are the candidates for the singular interfaces.

The singularity argument is consistent with the early

assumption by Bollmann and Nissen [8] that the three faces

of an O-lattice unit cell, each containing two xO
i (in an

O-point lattice), are candidates for the optimum interfaces. In

their method, only three non-coplanar xO
i were taken into

consideration. The candidates for the singular interfaces, or

optimum interfaces, have been extended here to include all

faces, each containing two xO
i associated with attainable bL

ai.

The total number of the candidates is usually much greater

than three [6]. Therefore, when an O-point lattice is con-

structed, an embedded particle may be fully surrounded by

principal O-lattice planes in different orientations when a

local interface is allowed to step along these planes. This

description in terms of the primary O-lattice planes is in

accord to but more restrictive than Bollmann’s suggestion

that ‘‘a crystal boundary will be placed, as far as possible,

through O-elements.’’ P. 186 [9]. This suggestion did not

specify what neighboring O-elements an interface should

pass through. However, one might intuitively understand

that an interface should pass through the O-elements in close

neighbors, resulting in a preferred interface containing dense

O-element. Using the density of the O-elements as optimal

Table 1 Dislocation structures

in singular interfaces for

different O-elements

O-element No. of minimum set(s) of dislocations in a

singular direction

No. of minimum set(s) of dislocations in a

s1 s2 Singular interface Vicinal interface

Point 1 (s1 = xO
1 ) 1 (s2 = xO

2 ) 2 or 3 (coplanar bL
ai) 3 (non-coplanar bL

ai)

Line 0 (s1 = xin) 1 (s2 = xO
i ) 1 2

Plane 0 (s1 = xin1) 0 (s1 = xin2) 0 1
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condition may not always give the principal O-lattice planes.

Note that when the misfit strain field is strongly anisotropic, a

line along dense O-points may not be parallel to xO
i and hence

it is not a singular direction to define a singular interface.

Here, it is emphasized that a preferred interface should pass

the O-elements in contacted O-cells. This equivalently

requests a preferred interface to pass the O-elements con-

nected by xO
i . The resultant overall preferred interface will

be locally along singular interfaces defined by the principal

O-lattice planes. It is worth of noting that a singular interface

containing widely spaced O-elements rather than densely

packed ones is probably more energetically favorable due to

the low dislocation density in the interface.

Description of singular interfaces with Dgs

While the normal of a set of principal O-lattice planes in an

O-point lattice can be determined from the cross product of

the two xO
i in the plane, it is more convenient to specify the

plane normal with a reciprocal vector. The reciprocal

vector for a set of principal O-lattice planes in the O-point

lattice is simply given by a displacement vector in the

reciprocal space [13],

DgP�I ¼ T0gP�a ¼ gP�a � gP�b; ð12Þ

where subscript I indicates that reciprocal vectors ga and gb

are related by the following transformation in reciprocal

space [17]

gP�b ¼ ðA�1Þ0gP�a: ð13Þ

Subscript ‘‘P’’ denotes the ‘‘principal’’ level: DgP-I

defines the principal O-lattice plane, gP-a defines the

principal (low index) planes in lattice a, and gP-b is

similarly defined. The plane normal to gP-a contains two or

three bL
ai corresponding to the xO

i in the plane normal to

DgP-I. Note that it is implied in Eq. 12 that lattice a is the

identification lattice for determining the displacement in

reciprocal space. This is different from formula for the

displacement in Bollmann’s book (Eq. C7-22 in [11]), where

identification lattice b was kept for calculation in reciprocal

space. For this reason, while Eq. 12 is consistent with

Bollmann’s formula for reciprocal vector for the O-lattice

(Eq. I2–22 in [11]), the identity of DgP-I as a displacement

vector was not noticed in the book. Using the reference

lattice a as the identification lattice in reciprocal space, it is

convenient to test the reciprocal relationship between xO
i and

DgP-I from [26]

DgP�I0xO
i ¼ g0P�aTxO

i ¼ g0P�abL
ai ¼ 0: ð14Þ

Therefore, once a singular interface is parallel to a

principal O-lattice plane normal to a specific DgP-I, the

Burgers vectors of the dislocations in the interface are

known to lie in the plane normal to the gP-a associated with

the DgP-I. In the case of an O-point lattice, the standard

reciprocal relationship holds between each set of principal

O-lattice planes and a reciprocal vector of DgP-I. One can

specify the total number of principal O-lattice planes

according to Eq. 12. Take a bcc lattice as lattice a for

example. It is well known that there are six gP-as of {110}b,

if h111ib/2 are adopted for bL
ai. Therefore, one finds six sets

of principal O-lattice planes, each normal to a DgP-I

associated with different gP-a of {110}b.

The expression of the principle O-lattice planes with

DgP-Is facilitates a direct measurement of singular inter-

faces. The DgP-I vectors can be conveniently determined

from an overlapped diffraction pattern taken from an

interface region using a transmission electron microscope

(TEM) (Ref. Fig. 5). Figure 4a provides an illustration of a

diffraction pattern from a zone axis of [-101]f from a fcc

crystal, overlapped with a pattern of [-1-11]b from a bcc

crystal at the Pitsch OR [27]. Three DgP-Is associated with

{110}b are contained in this pattern. When the related gP-a

and gP-b are parallel to each other, e.g., (1-10)b and

(0-20)f in Fig. 4a, the associated DgP-I that is parallel to

them is in a rational orientation with respect to both crys-

tals. However, some DgP-Is may not be parallel to their

connected gP-a or gP-b, even if the OR is rational, such as

DgP-I1 and DgP-I2 marked in Fig. 4a. In terms of these DgP-

Is, the reason for irrational orientations of possible singular

interfaces become clear. Additionally, a singular interface

can also be identified in the TEM images according to the

property of the planes defined by DgP-I(s). In general, a

reciprocal vector Dg (=ga - gb) presents a set of periodic

Moiré planes formed from the interference of planes

defined by ga and gb [28]. The Moiré patterns visible from

the TEM images can often be used to verify the association

of a facet with any Dg [29] (Ref. Fig. 5). If ga and gb are

not parallel to each other, the planes represented by ga and

gb will match at their edges in the interface parallel to the

Moiré planes [6]. When this matching feature is observed

from a high resolution TEM, it can also be used to verify

the association between the observed interface and the

Dg related to the matching planes.

The expression of the principal O-lattice planes with

DgP-Is is applicable to the other shapes of O-elements [6].

Only when Rank(T) = 3, can a one-to-one correspondence

be defined between a set of principal O-lattice planes and a

reciprocal vector of DgP-I. When Rank(T) \ 3, DgP-Is are

always computable with Eq. 12 and its total number again

equals to that of gP-as. However, Eq. 12 is now a projection

operation. When Rank(T) = 2, all resultant DgP-Is must lie

in a plane normal to the invariant line xin [12]. When

Rank(T) = 1, all resultant DgP-Is must lie in one direction
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normal to the invariant plane [30]. An O-lattice in 3D is

usually unsolvable when Rank(T) \ 3, but determination

of one principal O-lattice plane containing either a set of

O-lines or one O-plane element is often possible. This

principal O-lattice plane is normal to a group of DgP-Is. It

has been proven [12] that the plane containing a set of

O-lines is normal to at least two DgP-Is, with their associ-

ated gP-a lying in the zone axis of bL
i for the O-lines.

Figure 4b shows an example of three parallel DgP-Is in an

overlapped diffraction pattern in the same zone axes as in

Fig. 4a. Because of linear relationship between reciprocal

vectors in these parallel zone axes, all DgIs must be parallel

to each others. According to the plane matching property of

the Moiré planes, the singular interfaces normal to the

parallel DgIs will appear coherent when it is viewed from

the orientation parallel to the zone axes in Fig. 4b. This is

because the misfit displacement, parallel to the Burgers

vector of the dislocations, is along the projection direction

and hence invisible. If an O-plane exists, this plane is

normal to all DgP-Is in different zone axes, no mater

whether a periodic set of O-planes are available or not.

Therefore, any principal O-lattice plane, is normal to at

least one DgP-I. Usually 1/|DgP-I| only reflects periodicity of

the O-point lattice structure, since the O-lines or O-planes

do not often display the periodicity in 3D.

In one case, a DgP-I does not define a principal O-lattice

plane, but it still defines a possible singular interface. This

occurs when Rank(T) = 2 and when only one set of

O-lines is available [25, 31]. The interface normal to a

single DgP-I contains two sets of parallel dislocations,

whose Burgers vectors lie in the plane gP-a associated with

the particular DgP-I. This interface is singular with respect

to the IO, since any deviation will instigate the formation

of one or more extra sets of dislocations. The description of

Fig. 4 Overlapped diffraction pattern for hypothetic fcc/bcc systems in

zone axes of [-101]f//[-1-11]b: a Pitsch OR with (0-20)f//(1-10)b,

b Anticlockwise rotation of 5.71� of bcc from (a) to lead to parallelism

of Dgp-Ii. Dots (red) and circles (blue) represent reciprocal points in

lattice a and b, respectively

Fig. 5 TEM image of an embedded Mg17Al12 plate-shaped precip-

itate in an AZ91 Mg–Al alloy, viewed from [0001] of the matrix (hcp)

and [011] of Mg17Al12 (bcc). The terraces in each side facet are

parallel to a set of Moiré fringes, normal to a Dg marked in the

diffraction pattern in the top-right insert (where diffraction spots from

the matrix are indicated with four indexes, and that from Mg17Al12

with three indexes). The area near the index ‘‘43-3’’ has been

enlarged in the top-left insert to show a ledge between terraces. This

figure has reused parts of Figs. 4 and 6 in [29] with kind permission

from Taylor & Francis Group (http://www.informaworld.com)
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the dislocation structure in this type of interfaces is com-

plicated, since the O-lattice is not definable in 3D and

periodic O-cell structure is unavailable in 3D. Bollmann

has provided a method to solve this problem [11]. Since

DgP-Is always exist, the misfit variation can also be ana-

lyzed with DgP-Is regardless of whether the O-elements are

solvable in a plane [32]. The relationship defined in Eq. 14

can be extended to more general vectors in the interface

[6]. This implies that any misfit displacement in the

interface normal to DgP-I must lie in the plane normal to

gP-a. Accordingly, one can specify the misfit distribution

according to the arrangement of DgP-Is and their associated

Moiré planes [32]. In other cases, an interface may contain

two sets of parallel dislocations, such as in an asymmetric

tilt grain boundary, which can be added to Fig. 2. This

interface is not a singular interface, since a deviation in the

IO does not necessarily add new type of dislocations. For

the special case in Fig. 1 or 2, each definable DgP-I is

normal to a principal O-lattice planes containing a set of

O-lines. The DgP-I associated with the gP-a parallel to the

rotation axis is a zero vector and it defines the invariant line

in reciprocal space.

Finally, we can conclude that the orientation of any

singular interface in the primary preferred state, coherent

or semicoherent containing 1, 2 or 3 sets of dislocations,

can be identified with the DgP-I vector(s). In most cases, the

singular interface is parallel to a principal O-lattice plane,

containing periodically distributed O-points or O-lines, or

parallel to an O-plane. Such a singular interface is normal

to at least one DgP-I. An interface containing two set of

parallel dislocations is a singular interface if the system

only contain one plane of O-lines. This singular interface is

normal to one DgP-I. Only in the case of O-point lattice, the

singular interfaces defined by the principal O-lattice planes

can fully enclose an embedded crystal. In this case, each

DgP-I is normal to a set of principal O-lattice planes.

Otherwise, the O-plane only confines one singular inter-

face, the resultant shape of embedded phase is a plate. In

this case, each DgP-I is normal to this O-plane. For the case

of O-lines, all possible singular interfaces must contain the

invariant line, which is the zone axis of all DgP-Is. The

shape of embedded phase is a lath along the invariant line.

The major facet is usually defined by the singular interface

containing the O-lines. This interface is normal to a group

of DgP-Is. If only one plane containing the O-lines is

available, the rest DgP-Is also define singular interfaces

in various orientations. Therefore, no matter what the

dimension is the O-element, an interface that is singular in

terms of dislocation defects is always normal to at least one

DgP-I. Reversely, a plane normal to at least one DgP-I is

always a candidate for a singular interface. Other facets

that exhibit singularity in term of ledge defects, i.e., those

in rational orientations, may also coexist with the singular

interface in terms of dislocation defects considered above.

Considerations on the OR space

In the previous section, the candidates for singular inter-

faces were mainly analyzed according to the singularity in

terms of the dislocation defects with respect to the change

in IO. However, these interfaces may not be singular with

respect to the OR. Given a system with the freedom to vary

the OR, an energetically preferred OR often permits an

interface to be singular with respect to the OR. In this

section, we discuss the possible preferred ORs.

In the region of space where the OR allows the primary

preferred state, one can always construct an O-point lattice

at any OR and use DgP-Is in various orientations to identify

a set of semicoherent singular interfaces. These interfaces

corresponding to a random OR are not singular with

respect to the OR. Restrictions to the OR come from a

further reduction of the defects. Here both types of

defects—ledges and dislocations—are taken into consid-

eration. If the ledges have a significant effect on the

selection of the OR, then the singular interface tends to be

parallel to a low index plane, containing densely packed

atoms without ledges. The corresponding OR is such that

DgP-I is parallel to either one or both of gP-a and gP-b, to

permit the singular interface to characterize singularities in

terms of both local minimum dislocations and ledges on the

interface plane at least with respect to one crystal. Such an

interface has been identified by following one of three Dg

parallelism rules, i.e., Rule I in form of DgP-I//gP-a or gP-b

[6]. Parallelism of two vectors confines two degrees of

freedom in the OR space. This means an interface fol-

lowing Rule I is singular with respect to changes in a

specific 2D space in the 3D OR space. Usually, a typical

rational OR implies parallelism to hold both between gP-a

and gP-b, and between two low index directions (often bL
ai//

bL
bi) in the parallel planes defined by gP-a and gP-b. These

two pairs of mutually dependent parallel directions fully

constrain the OR.

When the singularity in the dislocation structure has a

dominant effect, the preferred OR tends to permit the

elimination of one or more sets of dislocations, or equiv-

alently the existence of an O-plane or a set of O-lines.

However, this demands the system to meet certain condi-

tions. Christian has provided simple criteria to check the

conditions [17]. In accordance with the proper lattice cor-

respondence for the primary preferred state, one can

determine a unique pure deformation, and three eigen-

values ki for this deformation (k1 \ k2 \ k3). If k1 \ 1 and

k3 [ 1, then an invariant line strain (Rank(T) = 2) is
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possible. If k1 \ 1, k2 = 1 and k3 [ 1, then an invariant

plane strain (Rank(T) = 1) is possible. Satisfaction to the

above condition is independent of the OR but depends on

the lattice parameters of the given system.

The condition for the existence of an invariant line can

often be fulfilled in commonly used systems. In this case,

the OR permitting the invariant line can be searched with

the condition of |T| = 0. In the 3D space for the ORs, a

surface defined by |T| = 0 can be determined numerically,

as shown by Bollmann and Nissen’s pioneering analysis

[8]. To identify the OR that meets the O-line criterion, one

can check angles between any two DgP-Is, since the plane

containing the O-lines is normal to two DgP-Is. This con-

dition defined another Dg parallelism rule, i.e., Rule II:

DgP-Ii//DgP-Ij [6]. Analytical method is now available for

solving all possible ORs and the corresponding IOs for the

interfaces that obey Rule II in an fcc/bcc system [33]. The

OR for a particular bL
ai that defines one type of O-line only

confines a curve in the |T| = 0 surface [12]. This means the

interface containing the O-lines is singular with respect to

the deviation of the OR in 2D, i.e., from the specific curve,

but one degree of freedom remains unfixed in the 3D OR

space.

Since the direction of two parallel DgP-Is is usually in an

irrational orientation, as seen in Fig. 4b, elimination of one

or two sets of dislocations in the singular interface usually

comes at the expense of adding ledges to the interface. The

viewpoint of ledges replacing dislocations is similar to the

concept of the structural ledge model [34], in which the

structural ledges may effectively compensate interfacial

misfit along one direction. The structural ledge model

usually starts from a rational OR with parallel gP-a and gP-b.

However, a rotation between gP-a and gP-b is necessary for

the ledges from different side of the interface to match

when the ledge heights (1/|gP-a| and 1/|gP-b|) are different.

Only when such a small rotation (which must agree with

Rule II) is allowed, can the structural ledge structure be

extended endlessly along the invariant line crossing the

ledges [32]. Therefore, an OR which obeys Rule II is

usually irrational, but the deviation from a rational OR may

be so small that it is often regarded as a measurement error.

Further reduction of defects of either ledges or dislo-

cations requires the OR to obey the DgP-I parallelism rule

twice: Obeying Rule I and II will lead to a single set of

dislocations in a ledge-free interface. Obeying Rule II

twice will assure a dislocation-free structure, i.e., an

O-plane, in an interface. Parallelism between four inde-

pendent reciprocal vectors virtually fixes four degrees of

freedom, which is usually impossible in the 3D OR space.

That is why these conditions can only be fulfilled when the

lattice parameters are special, as they bring additional

degrees of freedoms to a system with the variation of lattice

parameters. When this becomes possible, the OR for either

case is a unique point in the |T| = 0 surface. Therefore, the

interface free of any dislocation is fully singular in the 5D

BGP space. The same is an interface containing a single set

of dislocations and no ledges. However, due to the special

requirement on the lattice parameters for a fully singular

interface, such types of singular interfaces are rare.

In a general system, a further reduction of a set of

defects in a plane containing the O-lines is impossible.

Therefore, usually singularity in terms of the dislocations

only confines four degrees of freedom in the geometry of

the singular interface in the 5D BGP space. The observa-

tion of reproducible OR indicates that the remaining one

degree of freedom in the OR is often fixed by a supple-

mentary constraint. When the supplementary constraint

does not correspond to a sharp reduction in the interfacial

energy, possible small scattering in the OR may exist.

Various supplementary constraints have been used in dif-

ferent models with certain experimental supports, as sum-

marized in a recent review [6]. One supplementary

constraint is maximum dislocation spacing, implying a

further reduction of energy by minimizing dislocation

density. This constraint is in principle consistent with the

energy parameter p given by Bollmann and Nissen’s [8]. In

contrast to the use of a scalar parameter, the present

approach directly requires the singularity, equivalent to

infinite spacing for other types of dislocations, and the

maximization of the spacing of existing dislocations is

required at the supplementary level. In the calculation

for p, the O-cell walls for the dislocation structure were

assumed to be parallel to the faces of the O-lattice unit cell

for simplicity [8]. A more strict O-cell calculation is used

here.

Another frequently used supplementary constraint is the

requirement of bL
ai//b

L
bi in the interface. Such a requirement

may be considered to further reduce the interfacial energy

by minimizing the ledge energy when ledges must be

present. This is because these parallel Burgers vectors, as

the common direction between the interface and the terrace

planes of the ledges structure, define the direction of the

ledges. A ledge along bL
ai//b

L
bi is free of kinks, and hence

the distorted bonds associated with the ledge is minimized.

Analytical expressions for the ORs, IOs and dislocation

structures for the singular interfaces in this condition have

been developed for fcc/bcc system and general systems

[35, 36]. For this special case, the OR and IO of the sin-

gular interface can also be predicted with 2D invariant line

model [37] and an edge-to-edge matching model [38], for a

selected pair of bL
ai//b

L
bi. Under the special condition of bL

ai//

bL
bi, the parallel DgP-Is can be defined in these parallel zone

axes, as in Fig. 4b. The singular interface normal to two or
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three DgP-Is will exhibit an edge-to-edge matching feature

according to the property of Moiré planes. This matching

property has been used as a criterion in the edge-to-edge

matching model [7, 38]. In this model, the priority is par-

allelism of a row of atoms of small misfit, such as along

parallel bL
ai and bL

bi. In contrast, in the present approach the

parallelism of DgP-Is is the priority, which ensures singu-

larity, but parallelism of bL
ai and bL

bi is required at the

supplementary level.

Interfaces in a secondary preferred state

According to classification based on coherency in the

interfacial structure, a singular interface that is singular in

terms of dislocation defects may have three kinds of

structures: coherent, semicoherent, and CS-coherent. The

aforementioned analyses have yielded a simple method to

identify coherent and semicoherent singular interfaces.

Namely, they can be identified with measurable DgP-I

vectors. In this section, it will be shown that any

CS-coherent singular interface can also be identified with

measurable Dg vectors.

To study a CS-coherent interface, it is crucial to identify

the secondary preferred state in the interface. As stated

earlier, a secondary preferred state can be represented by a

plane of densely and regularly distributed CSL points.

Consider first an extreme case, in which an ideal CSL is

definable in 3D without imposing any constraint. There-

fore, singular interfaces in various orientations can be

defined by different planes containing dense CSL points.

Each of these CSL planes must be normal to a group of

small Dgs [39]. This condition stems from the reciprocal

theorem proposed by Grimmer [40] between the CSL and

DSC lattice (complete pattern shift lattice [11]) in reci-

procal space, because any Dg is a vector of the DSC lattice.

Although this ideal CSL is uncommon in heterophase

systems, if it occurs, any singular interface in the system is

normal to measurable DgCSL’s vectors.

A deviation from a properly selected secondary pre-

ferred state usually exists, and this defines the secondary

misfit. The secondary misfit dislocation structure can be

determined in the same way as the ‘‘primary’’ misfit dis-

locations based on the O-lattice. All formulas in the

O-lattice calculation for interfaces in the primary preferred

state can be extended to interfaces in secondary preferred

states. To distinguish the preferred state, the adjective

‘‘secondary’’ is used for variables in the calculation of the

secondary O-lattice. A construction of the secondary

deformation matrix AII is essential, and this aspect has

been discussed in Selection of A Section. Based on it the

secondary displacement field TII can be calculated (Eq. 3).

To ensure the relaxed pattern of a selected CSL for a

secondary preferred state to be repeated in different regions

separated by the secondary dislocations, the secondary

Burgers vectors bII should be chosen from small lattice

translation vectors in the DSC lattice, corresponding to the

selected CSL [11]. By replacing T and bL
ai with TII and bII

ai

in Eqs. 7 and 10, the secondary O-lattice and O-cell

structure can be determined. Similarly, by replacing gP-a

with gII
a which defines a plane containing two bII

ai, one

obtains a DgP-II that defines a principal O-lattice plane in a

secondary O-point lattice. Like in the cases of primary

preferred state, a principal O-lattice plane containing sec-

ondary O-lines will be normal to a group of DgP-IIs and a

principal O-lattice plane parallel to a secondary O-plane

will be normal to all DgP-IIs.

These principal secondary O-lattice planes are the can-

didates for the singular interfaces, provided that each of the

principal secondary O-lattice planes is also parallel to the

plane defining the secondary preferred state. Such a sin-

gular interface follows Dg parallel Rule I [6], in the form of

DgP-II//gCSLa//gCSLb, where gCSLa and gCSLb define the

overlapped planes to form the 2D constrained CSL for the

preferred state. It is free from the ledges with terraces

parallel to the 2D CSL plane. To distinguish these ledges

from other interfacial ledges, we will call them the specific

ledges. Usually in the relaxed structure at least a row of

atoms from each crystal will be parallel to each other to

define a row of dense constrained CSL point. This paral-

lelism condition together with Rule I make the OR to be

fixed fully. The corresponding singular interface is normal

to the parallel gCSLa, gCSLb and DgP-II. If the interface

contains secondary O-lines, the interface will be normal to

a group of DgP-IIs. This is classified as another Dg paral-

lelism rule, i.e., Rule III [6] in the form of DgP-IIi//DgP-IIj.

Therefore, a singular interface that is free of any specific

ledges and that contains secondary O-lines will follow both

Rule I and III. As explained earlier, such an interface is

possible only when the lattice parameters of different

crystals are specially related. In a more special case, a

singular interface is parallel to a secondary O-plane. This

interface can be equivalently described as an ideal CSL

in 2D, without any secondary strain. Then, the singular

interface is normal to all DgP-IIs, and also to gCSLa and

gCSLb. As expected, the lattice parameters must be spe-

cially related for this ideal CSL plane to be realized.

While parallelism of gP-a and gP-b usually ensures

DgP-I//gP-a//gP-b for a singular interface at the primary pre-

ferred state, parallelism of gCSLa and gCSLb to form a plane

of constrained CSL does not always permit DgP-II to be

parallel to these parallel gCSLa and gCSLb. This is because

the secondary O-lattice and the constrained CSL for the

preferred state are independently constructed. For example,
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the energetically favorable Burgers vectors bII
ais for the

secondary dislocations may not lie in the constrained CSL

plane defined by gCSLa and gCSLb. When the condition of

DgP-II//gCSLa//gCSLb is not reachable, an interface that is

singular in terms of secondary dislocations may still tend to

be normal to at least one DgP-II, but the resultant interface

may contain specific ledges. In the analysis for the primary

preferred state, the interfacial ledges were not taken into

consideration. Since the secondary preferred state is defined

by a structure in 2D, any specific ledges, where the pre-

ferred state discontinues, should be treated physically as

secondary dislocations. Corresponding to a selected CSL in

2D, the misfit in the plane is fixed, but AII may vary with the

assumed CSL in 3D for the calculation of the secondary

misfit in 3D. Therefore, the specific ledges may or may not

be described by secondary dislocations according to the

secondary O-lattice calculation based on the selected AII.

This aspect needs special attention in analysis of singular

interfaces in a secondary preferred state.

When a singular interface contains specific ledges, its

orientation can be analyzed with two singular directions.

One direction is along the ledges. It is usually parallel to a

row of dense atoms from each crystal, in the condition that

the overlapped rows define a row of dense CSL points

constrained with small secondary misfit [15, 16]. Usually a

proper bII
ai and xII�O

i can be defined along this direction.

Thus, a line along this singular direction only intersects up

to one set of secondary dislocations [16]. Another singular

direction is across the ledges, often being perpendicular to

the ledges. The misfit along this singular direction is fully

accommodated by the displacement associated with the

specific ledges, such that the ledges virtually serve as

secondary misfit dislocations. Depending on the selection

of AII, this direction can be defined by either the secondary

invariant line xII
in or by a principal vector of secondary

O-lattice xII�O
i . When this singular direction is defined by

xII
in, the secondary misfit displacement associated with the

ledges crossed by a line along xII
in can fully cancel the

secondary misfit in the terraces crossed by the line. When

this singular direction is defined by xII�O
i , each specific

ledge is associated with the secondary dislocation, that

accommodates the secondary misfit strain field between the

secondary O-elements connected by xII�O
i . In both cases,

any deviation from this singular direction in terms of either

xII
in or xII�O

i implies additional type of secondary disloca-

tions in the interfaces.

The one-to-one association between a specific ledge and

a secondary dislocation is ensured by the geometry of the

interface being normal to a group of specially arranged

parallel Dgs [6]. Since in both cases the ledges play a role

in cancellation of the secondary misfit, the line along xII�O
i

can be treated as a quasi invariant line [41]. Therefore, due

to the presence of either the secondary invariant line or the

quasi invariant line, it is possible to find a group of parallel

Dgs in the zone axis along the ledges. The corresponding

singular interface is said to obey Dg parallelism Rule III: in

the form of either DgP-IIi//DgP-IIj or DgP-II//DgCSL-r, which

is more specific than Rule III in the early version [6]. Here,

DgCSL-r is recovered from DgCSL that defines the plane for

the preferred state in the constrained CSL. Any deviation in

the OR will destroy the special correspondence between

the secondary dislocations and ledges, or destroy the

existence of xII
in in the interface, and hence cause additional

defects to be present. Therefore, the CS-coherent interface

containing the specific ledges that can fully cancel sec-

ondary misfit is fully singular with respect to both IO and

OR. Similar to the primary preferred state, the OR allowing

for Rule III can be determined with condition of |T| = 0. In

this case with a pair of parallel directions along the ledge,

the calculation can be made in 2D within the plane normal

to the ledge. Examples about how to select the constrained

CSL and how to calculate the OR and IO can be found in

[15, 41].

Finally, an example of a singular CS-coherent interface in

an AZ91 Mg alloy [29] is given in Fig. 5 to demonstrate the

relationship between interface facets and Dgs. This example

is helpful because the Moiré fringes due to overlapping to the

two crystals can be clearly seen. These fringes can be used to

test the relationship between interface facets and Dgs. TEM

image in Fig. 5 shows two interface facets between an

embedded Mg17Al12 (bcc) precipitate plate in the matrix

(hcp). As shown in the inserted diffraction pattern, the OR

between the two phases is close to the Burgers OR, described

by (0001)M//(011)P and [01-10]M//[21-1]P, where sub-

scripts ‘‘M’’ and ‘‘P’’ denote matrix and precipitate, respec-

tively. One can also see from the index in this diffraction

pattern that the lattice parameters of the two lattices differ

significantly (aP/aM & 3) (Many other spots are due to

double diffraction). Therefore, the singular interface in this

system must be in a secondary preferred state. According to

original study of this system [29], the broad face of the plate

is parallel to (0001)M and (011)P. The plate has two faceted

side faces of different sizes. The major side face is approx-

imately parallel to (43-3)P and the minor one is approxi-

mately parallel to (12-30)M, as marked in the figure. Each of

these faces (or more precisely, the fine facets on the side

face) is normal to a Dg in the inserted diffraction pattern (i.e.,

(43-3)P side face is normal to (-1100)M–(03-3)P, and

(12-30)M side face is normal to (10-10)M–(4-11)P). This

relationship can be verified by the Moiré fringes in the image,

since the fine facets in each side face are exactly parallel to a

set of Moiré fringes, which must be normal to the corre-

sponding Dg [28]. A careful examination [29] revealed that
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the (43-3)P side face is normal to a group of Dgs. A more

detailed study [16] has shown that the parallel Dgs include a

DgP-II (=(02-20)M–(63-3)P) and a DgCSL-r (=(-1100)M–

(03-3)P), indicating that the major side face obeys Rule III.

This study has also provided the configuration of secondary

dislocations of the CS-coherent structure in this major side

face [16].

As seen from Fig. 5, the observed faceted interfaces in

high index or irrational orientations may appear puzzling.

The use of Dgs provides a convenient and effective tool to

rationalize these puzzling facets before any calculation is

made. Parallelism of Dgs may not be obvious in the limited

range of a diffraction pattern, and the special OR for the

parallelism of Dgs may be buried in the experimental

uncertainty, as in the case of Fig. 5 (where a rotation of

*0.5� from the Burgers OR was found [29]). To examine

the possible CSL in reciprocal space and parallelism of

Dgs, one is advised to draw points of overlapped reciprocal

lattices in a large range. Examples for this practice can be

found in [15, 16].

Discussions

On identities and roles of ledges and dislocations

In this article, ledges and dislocations are identified

according to their references. Namely, the ledges are defined

with respect to the plane of terraces, and dislocations are

defined with respect to the continuity of the preferred state.

Since the secondary preferred state is defined by a 2D

structure, a specific ledge in a CS-coherent interface can be

regarded as a secondary dislocation when the terrace plane is

parallel to the plane of the constrained CSL that defines the

preferred state. It is possible to define the Burgers vector of

this secondary dislocation associated with a specific ledge

by deliberate selection of the constrained CSL in 3D. An

atomic ledge in a semicoherent interface does not usually

coincide with a dislocation, whose Burgers vector is com-

mon to that of dislocations in either lattice. In general, the

row of atoms along a ledge may be associated with local

misfit displacement(s). This feature was considered as a

characteristic of a dislocation, and called disconnections by

Pond and his colleagues in a topological model [42, 43]. It is

worth to note that the displacement vectors associated with

the individual atoms along a ledge are not identical to a

unique effective Burgers vector unless the terrace plane is a

true invariant plane such as a twining dislocation. The

notation of coherency and anti-coherency dislocations by

Olson and Cohen [44] is helpful for clarifying the confusion

on the ledges and dislocations. The dislocation defects in a

semicoherent interface are anti-coherency dislocations. The

disconnections are the coherency dislocations associated

with atomic ledges. Such a disconnection in a coherent or

semicoherent interface is treated as an atomic ledge but not a

dislocation in the present analysis of defect singularity.

When the singular interface is defined according to the

singularity in terms of ledges, the singular interface is free

of any atomic ledge, and the vicinal interface with its IO

deviated from the singular interface will contain the ledges.

Like the role of ledges in a surface, these ledges may be

referred to as growth ledges, since migration of the singular

interface may be assisted by lateral motion of ledges in a

vicinal interface. When the singular interface is defined

according to the singularity in terms of dislocations, the

vicinal interface with its IO deviated from the singular

interface will probably also contain ledges. As mentioned

earlier, a preferred interface tends to step along the principal

O-lattice planes (Ref. the top-left inset in Fig. 5). In this

case, the terrace plane is the singular interface. The ledge is

associated with one or more misfit dislocations, which

cancels the misfit strain associated with the ledge. These

dislocations are the extra dislocations necessary in the vic-

inal interface. The height of such a ledge is usually in unit of

1/|Dg |. When the O-lattice is a point lattice, each terrace can

lie on a position of a set of principal O-lattice planes if the

interplanar spacing is 1/|DgP-I|. When the singular interface

is defined by a plane containing a set of O-lines or an

O-plane, some residual long-range strain may coexist with

the dislocation(s) associated with the ledge connecting the

singular interfaces at two levels. This is because only one

plane containing the O-lines or an O-plane is definable. A

displacement with a long-range effect at a ledge can make

the same structure to be realized in another terrace. These

ledges are possibly movable, so they may serve as growth

ledges. When the terrace plane has an irrational orientation,

the terrace planes themselves must contain ledges in atomic

scale. These atomic ledges are a part of the interfacial

structure in the singular interface, and they cannot move

individually. Therefore, examination of the terraces

according to the singularity of structure in the terrace plane

helps one to clarify the mobility and role of ledges.

On limitations of the method

As a geometric approach, the present approach provides a

simple and general quantitative method to identify the can-

didates of singular interfaces. It mainly helps one to under-

stand the observed facets and their related OR. The

observation of reproducible OR and facets in irrational IO

usually indicates that the preferred facets can be interpreted

according to singularity in terms of dislocations. However,

this approach is incapable of predicting what would be

observed. Application of the approach assumes the lattice

misfit distribution play an influential role in the development

of the OR and IO. With this assumption, uncertainties in
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several levels of inputs still impede the predictability of this

approach.

Firstly, the preferred state is an important input for the

calculation, but its selection is not always obvious. Identi-

fication of the region in the 3D space for the ORs in which

the interfaces are in the primary preferred state is relatively

easy if this preferred state is allowed by the lattice param-

eters, such as fcc/bcc system (Fig. 4). This can be done by

the construction of one-to-one lattice correspondence in the

condition that the deformation from one lattice to the other is

reasonably small. The possible ORs for the singular inter-

faces in the primary preferred state are usually limited to one

small region in the 3D space for the ORs, where the misfit

strain is small. Usually, a secondary preferred state is

adopted when the primary preferred state is not attainable.

However, identification of the possible regions in the 3D

space for the ORs in which the interfaces are in a plausible

secondary preferred state is a difficult task. It was noted by

Bollmann [11] that which secondary preferred state is real-

ized in an interface depends on the material and conditions

for the interfaces to develop. An investigation of the singular

CS-coherent interface often needs guidance from observa-

tions for suggestion of the secondary preferred state [15, 16].

Within the region where a preferred state is possible, there

are still numerous ORs for candidates of singular interfaces.

However, similar to the cases for grain boundaries [45],

misorientation range for a CS-coherent interface is much

narrower than that for a semicoherent interface. After the

preferred state has been decided, the candidates of singular

interface can be greatly reduced by the constraint of one or

more Dg parallelism rules.

Secondly, which Dg parallelism rule that a system may

follow is not predicable according to a geometric analysis.

The OR developed in a system is greatly affected by the

weight of ledges as defects in the interface. A singular

interface according to singularity in terms of ledge defects

must be normal to at least one low index DgP in one phase,

and one in terms of dislocation defects must be normal to at

least one DgP-I (or DgP-II). When a reproducible OR is

observed, the misfit dislocations must play a role in its

development. The corresponding singular interface may be

attributed to singularity in terms of solely dislocations or an

integrated influence of both ledges and dislocations. A

preference of Dg parallelism Rule II belongs to the former

case. It usually yields a singular semicoherent interface in an

irrational orientation, which implies that the energy of led-

ges is relatively low. The singular interface following Rule I

exhibits singularity in terms of both ledge and dislocation

defects. In reality, the relative effects of atomic ledges and

misfit dislocations may vary from one system to another,

depending on the relative energy of these defects. Available

data of Wulff plot or surface energy may be used to estimate

the effect of ledges on the surface of each crystal. If the cusps

in the plot are deep or surface energy is strongly anisotropic,

such as for a covalent crystal, then the ledge energy is likely

relatively high and one will expect the OR to follow Rule I

rather than II. In metallic systems the ledge energy is rela-

tively low [14], and hence obeying Rule II can be expected

so that the dislocation set can be minimized, as suggested by

observation of irrational habit planes in systems containing

fcc, bcc and hcp metallic phases [6]. In a CS-coherent

interface, the specific ledges are equally important as the

secondary dislocations. In the development of the OR for

this interface, both specific ledge and dislocation defects

may play a role. Since the specific ledges are usually asso-

ciated with high energy, a CS-coherent interface has a

stronger preference to Rule I than a coherent or semico-

herent interface. Following Rule III that yields coincidence

of specific ledges and misfit dislocations in a singular

interface indicates that the energy of dislocations in the

ledge-free singular interface is high due to lack of favorable

Burgers vectors in the plane. In general, a singular interface

that follows Rule I is relatively easy to understand, as the

familiar principle for singular surface also applies. When a

singular interface is found to follow a single Rule II or III,

one can expect the role of dislocations has overridden the

role of ledges in the minimization of interfacial energy.

Reversely, if one expects the dislocations to have a dominant

role in the development of the OR and singular interface, the

system may follow Rule II or III.

Thirdly, even if the rule to be obeyed is known, there are

still two types of uncertainties. One is the specific vectors for

defining the rule. For example, it concerns what pair of

DgP-I//gP-a should be chosen for Rule I, or what bL
ai should be

used to define the O-line in the interface that follow Rule II.

After the above vectors are determined, the geometry of

candidates of singular interface is confined in a line (possi-

bly a curved line) in the 5D BGP space. Unless simulta-

neously following two rules is possible, which uniquely

fixes a singular interface at one point in 5D BGP space, one

will encounter another type of uncertainties. This is the

supplementary constraint that a system tends to take. With

this supplementary constraint, the candidates for the singular

interfaces can be narrowed to one point in the 5D BGP space.

Which supplementary constraint a system may select

remains to be a challenge. More experimental studies are

required to reveal the principles that govern the selection.

The calculation of the dislocation structures with the

O-lattice theory is based on an assumption that the misfit is

accommodated fully by the dislocations. Without this

assumption, the dislocation description of an interface of a

particular OR and IO cannot be unique. Consequently, the

calculation results are valid for interfaces where any long-

range strain, should it exist, is negligibly small. In real
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system, a small long-range strain may be present, especially

when the interface area is small. Therefore, the interface

surrounding a small particle may be free of any dislocation,

though misfit from the primary or secondary preferred state

exists. Similarly, other singular interfaces with semicoherent

or CS-coherent structure may be present with small long-

range strain. In particular, the dislocation spacing in a

semicoherent or CS-coherent interface may not reach the

theoretical value determined from the condition of full

accommodation. Usually, the observed spacing may be

smaller than the theoretical value. In addition, even though

the misfit strain is fully cancelled by the dislocations, the

dislocations may not be arranged in even spacing. Small

discrepancies at various locals are expected, since the

detailed mismatching distribution and local relaxation in

different O-cells are usually different. Therefore, the average

measured spacing should be used in comparison with the

calculated results.

The use of one Dg parallelism rule plus a supplementary

constraint can effectively reduce the geometry of the

potential singular interfaces to a limited number of isolated

points in the 5D BGP space. The structures in these candi-

dates of singular interfaces are different. The present

approach does not compare the dislocation structures in

different singular interfaces. Even if the dislocation has a

predominant effect on the development of the singular

interfaces, it is unreasonable to compare the interfacial

energy on the basis of the dislocation spacing only. Usually,

the dislocation density is high and the core energy of the

dislocations should be carefully evaluated. This task

attempts to find a global energy minimum, which is usually

beyond the capacity of a geometrical model. Finding the

global energy minimum requires a physical model. Com-

pared with searching for local minima in the whole 5D BGP

space with a physical model, the candidates of singular

interfaces identified from the present geometric analysis can

greatly reduce the calculations for energy. In further study,

the results from this approach will be used as input for cal-

culating interfacial energy. In addition, detailed investiga-

tions are required to find how mobility of a singular interface

and possible long-range strain may affect the selection of the

OR, which has been the major concern in the PTMC [21].

Summary

Based on the assumption that singularity in interfacial

energy is associated with singularity in the defect structure

in an interface, singular interfaces are identified according to

singularity in terms of interfacial defects: ledges and dislo-

cations. The structure singularities are defined by the elim-

ination of one or more classes of defects, which must be

present in the vicinal interfaces. Four classes of interfaces

have been classified, with a new class—CS-coherent—

added to the common list of coherent, semicoherent, and

incoherent. An interface with a CS-coherent structure is in a

secondary preferred state, in contrast to a coherent or

semicoherent in the primary preferred state. All four classes

of interfaces can be singular according to singularity in the

ledge structure. Such a singular interface is normal to a low

index gP-I vector from both or either crystal across the

interface. Singular interfaces are probably more often

influenced by singularity in the dislocation structure. Only

coherent, semicoherent and CS-coherent can be singular

according to singularity in the dislocation structure. The

preferred state in the areas between the dislocations must be

specified in a calculation of the dislocation structure.

The O-lattice theory has been applied to specify the

geometry of the singular interfaces that exhibit singularity

in terms of dislocation defects. The basic concepts and

major formulas of the O-lattice theory are reviewed mainly

for the interfaces in the primary preferred state. The

selection of A matrix is intentionally discussed to clarify

ambiguity about its selection in the literature. The advan-

tages of the O-lattice approach over the Frank–Bilby

equation for the calculation of dislocation structure are

highlighted. It is found from the O-lattice analysis that all

principal O-lattice planes are candidates of singular inter-

faces with respect to any deviation in IO. Based on the

association between the principal O-lattice planes and DgP-

Is, it is concluded that a singular coherent or semicoherent

interface is always normal to at least one DgP-I, associated

with a low index gP-a and gP-b. In general, an interface

normal to any one DgP-I is a candidate for interfaces that is

singular fully with respect to the IO. The results of the

O-lattice study have been extended to analyze interfaces in

secondary preferred states. Any singular CS-coherent

interface is parallel to a principal secondary O-lattice plane

that is normal to a DgP-II. Since a secondary preferred state

is confined in a plane, the specific ledges with terraces

parallel to this plane are treated as ‘‘physical’’ dislocations

in the singularity analysis, even though they are not so

calculated in the secondary O-lattice calculation.

An interface that is singular with respect to the OR

contains a structure of reduced defects, which is possible at

a special OR. The role of ledges is integrated into the

conditions for optimizing the OR. The OR corresponding

to a singular interface can be described by one or more of

the three Dg parallelism rules. Each Dg parallelism rule

constrains four degrees of freedom in the macroscopic

geometry of a singular interface, but one degree of freedom

in the OR is unfixed. Further reduction of defects, such as

in a coherent interface, is possible only when the lattice

parameters are special to permit the system to obey two

Dg parallelism rules. The corresponding singular interface

is then fully fixed. Usually a supplementary constraint is
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adopted by a system, and the geometry of a singular

interface is thus fixed. Therefore, a singular interface nor-

mal to a group of reciprocal vectors including at least one

Dg is singular fully respect to the IO and it is also singular

fully or partially respect to the OR.

The present approach provides limited number of can-

didates of singular interfaces, but it usually cannot predict a

unique point in the 5D BGP space for the OR and IO of a

singular interface to be observed. These candidates can

greatly reduce the calculation work required for a physical

model to determine the minimum interfacial energy in the

5D space. Identification of singular interfaces using Dgs is

experimentally convenient, because these reciprocal vec-

tors and their associated Moiré fringes are measurable with

TEM. The identities and roles of different defects are

discussed. A discussion was also made to clarify the lim-

itations of the approach and to suggest further study.
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